Магнитное поле конечного проводника. Магнитное поле прямого проводника с током. Магнитное поле катушки с током

Магнитное поле конечного проводника. Магнитное поле прямого проводника с током. Магнитное поле катушки с током

02.03.2024

Рассмотрим прямолинейный проводник (рис.3.2) , который является частью замкнутой электрической цепи. По закону Био-Савара-Лапласа вектор магнитной индукции
поля, создаваемого в точкеА элементом проводника с токомI , имеет значение
, где- угол между векторамии. Для всех участковэтого проводника векторыилежат в плоскости чертежа, поэтому в точкеА все векторы
, создаваемые каждым участком, направлены перпендикулярно к плоскости чертежа (к нам). Векторопределяется по принципу суперпозиции полей:

,

его модуль равен:

.

Обозначим расстояние от точки А до проводника . Рассмотрим участок проводника
. Из точкиА проведем дугу С D радиуса ,
– мал, поэтому
и
. Из чертежа видно, что
;
, но
(CD =
) Поэтому имеем:

.

Для получаем:

где и- значения угла для крайних точек проводникаMN .

Если проводник бесконечно длинный, то
,
. Тогда

    индукция в каждой точке магнитного поля бесконечно длинного прямолинейного проводника с током обратно пропорциональна кратчайшему расстоянию от этой точки до проводника .

3.4. Магнитное поле кругового тока

Рассмотрим круговой виток радиуса R , по которому течет ток I (рис. 3.3). По закону Био- Савара- Лапласа индукция
поля, создаваемого в точкеО элементом витка с током равна:

,

причём
, поэтому
, и
. С учётом сказанного получаем:

.

Все векторы
направлены перпендикулярно к плоскости чертежа к нам, поэтому индукция

напряженность
.

Пусть S – площадь, охватываемая круговым витком,
. Тогда магнитная индукция в произвольной точке оси кругового витка с током:

,

где – расстояние от точки до поверхности витка. Известно, что
- магнитный момент витка. Его направление совпадает с векторомв любой точке на оси витка, поэтому
, и
.

Выражение для по виду аналогично выражению для электрического смещения в точках поля, лежащих на оси электрического диполя достаточно далеко от него:

.

Поэтому магнитное поле кольцевого тока часто рассматривают как магнитное поле некоторого условного «магнитного диполя», положительным (северным) полюсом считают ту сторону плоскости витка, из которой магнитные силовые линии выходят, а отрицательным (южным) – ту, в которую входят.

Для контура тока, имеющего произвольную форму:

,

где - единичный вектор внешней нормали к элементуповерхностиS , ограниченной контуром. В случае плоского контура поверхность S – плоская и все векторы совпадают.

3.5. Магнитное поле соленоида

Соленоид - это цилиндрическая катушка с большим числом витков провода. Витки соленоида образуют винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов. Эти витки (токи) имеют одинаковый радиус и общую ось (рис.3.4).

Рассмотрим сечение соленоида вдоль его оси. Кружками с точкой будем обозначать токи, идущие из-за плоскости чертежа к нам, а кружочком с крестиком - токи, идущие за плоскость чертежа, от нас. L – длина соленоида, n число витков, приходящихся на единицу длины соленоида; - R - радиус витка. Рассмотрим точку А , лежащую на оси
соленоида. Ясно, что магнитная индукцияв этой точке направлена вдоль оси
и равна алгебраической сумме индукций магнитных полей, создаваемых в этой точке всеми витками.

Проведем из точки А радиус – вектор к какому-либо витку. Этот радиус-вектор образует с осью
уголα . Ток, текущий по этому витку, создает в точке А магнитное поле с индукцией

.

Рассмотрим малый участок
соленоида, он имеет
витков. Эти витки создают в точкеА магнитное поле, индукцию которого

.

Ясно, что расстояние по оси от точки А до участка
равно
; тогда
.Очевидно,
, тогда

Магнитная индукция полей, создаваемых всеми витками, в точке А равна

Напряженность магнитного поля в точке А
.

Из рис.3. 4 находим:
;
.

Таким образом, магнитная индукция зависит от положения точки А на оси соленоида. Она

максимальна в середине соленоида:

.

Если L >> R , то соленоид можно считать бесконечно длинным, в этом случае
,
,
,
; тогда

;
.

На одном из концов длинного соленоида
,
или
;
,
,
.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют

воднику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик);

если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по «правилу буравчика». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и"Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии г от бесконечно длинного прямолинейного проводника с током определяется выражением

где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μа, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать __ и называть абсолютной магнитной проницаемостью пустоты.

Отношение показывающее, во Но сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто

магнитным потоком, и обозначается буквой Ф (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мке):

1вб=10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного ноля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (А/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

Вычислим индукцию магнитного поля, создаваемого прямолинейным проводником с током в произвольной точке М . Мысленно разобьем проводник на элементарно малые участки длиною . Согласно правилу буравчика в точке М векторы от всех элементов тока имеют одинаковое направление - за плоскость рисунка. Поэтому сложение векторов можно заменить сложением их модулей , причем

Для интегрирования нужно переменные , , и выразить через одну какую-либо из них. В качестве переменной интегрирования выберем угол . ВС - есть дуга окружности радиуса r с центром в точке , равная (см. рисунок). Выразим из прямоугольного треугольника АВС : . Подставив это выражение в (3) получим . Из треугольника АОМ определим , где - кратчайшее расстояние от точки поля до линии тока. Тогда

Интегрируя последнее выражение по всем элементам тока, что эквивалентно интегрированию от до , находим .

Таким образом, индукция магнитного поля, созданного прямолинейным током конечной длины будет равна

В дальнейшем, я введу понятие вектора напряженности магнитного поля , которое связано с индукцией магнитного поля соотношением , , где - магнитная проницаемость среды. Для вакуума , для воздуха . Тогда напряженность магнитного поля, созданного проводником конечной длины будет равна

Для прямолинейного проводника бесконечной длины углы и будут равны , , а выражение в скобках принимает значение . Следовательно, индукция и напряженность магнитного поля, созданного прямолинейным проводником с током бесконечной длины равны соответственно

Магнитное поле кругового тока

В качестве второго применения закона Био - Савара - Лапласа вычислим индукцию и напряженность магнитного поля на оси кругового тока. Обозначим радиус окружности проводника с током через , расстояние от центра кругового тока до исследуемой точки поля через h . От всех элементов тока образуется конус векторов , и легко сообразить, что результирующий вектор в точке будет направлен горизонтально вдоль оси . Для нахождения модуля вектора достаточно сложить проекции векторов на ось . Каждая такая проекция имеет вид



где учтено, что угол - между векторами и равен , поэтому синус равен единице. Проинтегрируем это выражение по всем

Интеграл - есть длина окружности проводника с током, тогда

Учитывая, что , запишем

и, применяя теорему Пифагора, получим,

а для напряженности магнитного поля

Магнитная индукция и напряженность магнитного поля в центре кругового тока, ( , ) , соответственно равны

Взаимодействие параллельных проводников с током.

Единица силы тока.

Найдем силу на единицу длины, с которой взаимодействуют в вакууме два параллельных бесконечно длинных провода с токами и , если расстояние между проводами равно . Каждый элемент тока находится в магнитном поле тока , а именно в поле . Угол между каждым элементом тока и вектором поля равен 90°.

Тогда согласно закону Ампера, на участок проводника с током действует сила

а на единицу длины проводника эта сила будет равна

Для силы действующей на единицу длины проводника с током , получается, то же выражение. И наконец. Определяя направление вектора при помощи правила правого винта, и направление силы Ампера при помощи правила левой руки убедимся, что токи одинаково направленные, притягиваются, а противоположно направленные отталкиваются.

Если по проводникам, находящимся на расстоянии протекают одинаковые токи , то на каждый метр длины проводников действуют силы равные по или, учитывая что , получим, а густота линий была бы пропорциональна модулю вектора, или в другой записи .

Это означает, что магнитное поле не имеет источников (магнитных зарядов). Магнитное поле порождают не магнитные заряды (которых в природе нет), а электрические токи. Этот закон является фундаментальным: он справедлив не только для постоянных, но и для переменных магнитных полей.

Электрический ток в проводнике образует магнитное поле вокруг проводника. Электрический ток и магнитное поле - это две неотделимые друг от друга части единого физического процесса. Магнитное поле постоянных магнитов в конечном счете также порождается молекулярными электрическими токами, образованными движением электронов по орбитам и вращением их вокруг своих осей.

Магнитное поле проводника и направление его силовых линий можно определить при помощи магнитной стрелки. Магнитные линии прямолинейного проводника имеют форму концентрических окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление магнитных силовых линий зависит от направления тока в проводнике. Если ток в проводнике идет от наблюдателя, то силовые линии направлены по часовой стрелке.

Зависимость направления поля от направления тока определяется правилом буравчика: при совпадении поступательного движения буравчика с направлением тока в проводнике направление вращения ручки совпадает с направлением магнитных линий.

Правилом буравчика можно пользоваться и для определения направления магнитного поля в катушке, но в следующей формулировке: если направление вращения рукоятки буравчика совместить с направлением тока в витках катушки, то поступательное движение буравчика покажет направление силовых линий поля внутри катушки (рис. 4.4).

Внутри катушки эти линии идут от южного полюса к северному, а вне ее - от северного к южному.

Правилом буравчика можно пользоваться также и при определении направления тока, если известно направление силовых линий магнитного поля.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле;  - угол между вектором магнитного поля инаправлением тока впроводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

F = I·L·B

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Если и лежат в одной плоскости, то угол между и прямой, следовательно . Тогда сила, действующая на элемент тока ,

(разумеется, со стороны первого проводника на второй действует точно такая же сила).

Результирующая сила равна одной из этих сил. Если эти два проводника будут воздействовать на третий, тогда их магнитные поля и нужно сложить векторно.

Контур с током в магнитном поле

Рис. 4.13

Пусть в однородное магнитное поле помещена рамка с током (рис. 4.13). Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором и нормалью к площади :

Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.

Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям:

Это выражение также можно использовать для определения индукции магнитного поля:

Величину, равную произведению , называют магнитным моментом контура Р т . Магнитный момент есть вектор, направление которого совпадает с направлением нормали к контуру. Тогда вращательный момент можно записать

При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М , который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картой толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).


Рис. 71. Определение направления магнитных линий вокруг проводника с током по "правилу буравчика"

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).


Рис. 72. Определение направления отклонения магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии r от бесконечно длинного прямолинейного проводника с током определяется выражением


где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μ а, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать μ 0 и называть абсолютной магнитной проницаемостью пустоты.


1 гн = 1 ом⋅сек.

Отношение μ а / μ 0 , показывающее, во сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто магнитным потоком, и обозначается буквой Φ (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мкс):

1 вб = 10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (а/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

© 2024 sam-and-cat.ru - SamAndCat - Кошки дома